Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Front Immunol ; 15: 1356638, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550590

RESUMEN

Lymphocyte telomere length (TL) is highly variable and shortens with age. Short telomeres may impede TL-dependent T-cell clonal expansion with viral infection. As SARS-CoV-2 infection can induce prolonged and severe T-cell lymphopenia, infected adults, and particularly older adults with short telomeres, may display severe T-cell lymphopenia. To examine the relationship between T-cell TL parameters and T-cell counts, we studied 40 patients hospitalized with severe COVID-19. T-cells were isolated from lymphocytes, counted using flow cytometry, and their TL parameters were measured using the Telomere Shortest Length Assay. The cohort (median age = 62 years, 27% female) was racially and ethnically diverse (33% White, 35% Black, and 33% Other). On intensive care unit study day 1, T-cell count (mean=1.03 x109/L) was inversely related to age (p=0.007) and higher in females than males (p=0.025). Mean TL was 3.88 kilobases (kb), and 45.3% of telomeres were shorter than 3 kb. Using multiple regression analysis and adjusting for age and sex, T-cell count decreased with increased proportion of T-cell telomeres shorter than 3 kb (p=0.033) and increased with mean TL (p=0.052). Our findings suggest an association between the buildup of short telomeres within T-cells and explain in part reduced peripheral blood T-cell counts in patients with severe COVID-19. Shortened T-cell telomeres may be a risk factor for COVID-19-associated T-cell lymphopenia.


Asunto(s)
COVID-19 , Linfopenia , Masculino , Humanos , Femenino , Anciano , Persona de Mediana Edad , Linfocitos T , SARS-CoV-2 , Recuento de Linfocitos , Telómero
2.
J Clin Microbiol ; 62(2): e0083623, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38206000

RESUMEN

HIV is an ongoing global epidemic with estimates of more than a million new infections occurring annually. To combat viral spread, continuous innovations in areas including testing and treatment are necessary. In the United States, the Centers for Disease Control and Prevention recommend that laboratories follow an HIV testing algorithm that first uses a US Food and Drug Administration approved immunoassay to detect antibodies to HIV-1 or HIV-2 as well as HIV-1 p24 antigen in serum or plasma samples. An initially reactive specimen is tested by a supplemental assay for confirmation and to differentiate antibodies to HIV-1 or HIV-2. There are few Food and Drug Administration (FDA)-approved supplemental differentiation tests currently available. A multicenter investigation was conducted to determine the clinical performance for two independent versions of the Avioq VioOne HIV Profile Supplemental Assay (Avioq, Inc., Research Triangle Park, NC). The performance of both assay versions compared favorably with the performance parameters for the Geenius HIV 1/2 Supplemental Assay as published in that assay package insert (Bio-Rad Laboratories, Hercules, CA), the current gold standard for HIV supplemental testing. When comparing the two VioOne assays, version 2 (lacking HIV-2 p27 antibody detection) demonstrated improved reproducibility, specificity, and sensitivity as compared to its predecessor. IMPORTANCE We evaluated the reproducibility, sensitivity, and specificity data for two versions of the VioOne HIV Profile Supplemental Assay and compared these results back to similar results for the Geenius HIV 1/2 Supplemental Assay that are publicly available. Our study concluded that the VioOne HIV Profile Supplemental Assay compared favorably with the Geenius HIV 1/2 Supplemental Assay, thus providing an additional option for clinical laboratories to improve and expand their HIV testing capabilities.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Estados Unidos , Reproducibilidad de los Resultados , Anticuerpos Anti-VIH , Algoritmos , VIH-2 , Proteína p24 del Núcleo del VIH , Sensibilidad y Especificidad
3.
Front Immunol ; 14: 1260377, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124734

RESUMEN

Rhesus macaques (RMs) are a common pre-clinical model used to test HIV vaccine efficacy and passive immunization strategies. Yet, it remains unclear to what extent the Fc-Fc receptor (FcR) interactions impacting antiviral activities of antibodies in RMs recapitulate those in humans. Here, we evaluated the FcR-related functionality of natural killer cells (NKs) from peripheral blood of uninfected humans and RMs to identify intra- and inter-species variation. NKs were screened for FcγRIIIa (human) and FcγRIII (RM) genotypes (FcγRIII(a)), receptor signaling, and antibody-dependent cellular cytotoxicity (ADCC), the latter mediated by a cocktail of monoclonal IgG1 antibodies with human or RM Fc. FcγRIII(a) genetic polymorphisms alone did not explain differences in NK effector functionality in either species cohort. Using the same parameters, hierarchical clustering separated each species into two clusters. Importantly, in principal components analyses, ADCC magnitude, NK contribution to ADCC, FcγRIII(a) cell-surface expression, and frequency of phosphorylated CD3ζ NK cells all contributed similarly to the first principal component within each species, demonstrating the importance of measuring multiple facets of NK cell function. Although ADCC potency was similar between species, we detected significant differences in frequencies of NK cells and pCD3ζ+ cells, level of cell-surface FcγRIII(a) expression, and NK-mediated ADCC (P<0.001), indicating that a combination of Fc-FcR parameters contribute to overall inter-species functional differences. These data strongly support the importance of multi-parameter analyses of Fc-FcR NK-mediated functions when evaluating efficacy of passive and active immunizations in pre- and clinical trials and identifying correlates of protection. The results also suggest that pre-screening animals for multiple FcR-mediated NK function would ensure even distribution of animals among treatment groups in future preclinical trials.


Asunto(s)
Anticuerpos Monoclonales , Receptores Fc , Animales , Humanos , Receptores Fc/metabolismo , Macaca mulatta , Células Asesinas Naturales , Análisis Multivariante , Análisis por Conglomerados
4.
PeerJ ; 11: e16310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901455

RESUMEN

We collected oral and/or rectal swabs and serum from dogs and cats living in homes with SARS-CoV-2-PCR-positive persons for SARS-CoV-2 PCR and serology testing. Pre-COVID-19 serum samples from dogs and cats were used as negative controls, and samples were tested in duplicate at different timepoints. Raw ELISA results scrutinized relative to known negative samples suggested that cut-offs for IgG seropositivity may require adjustment relative to previously proposed values, while proposed cut-offs for IgM require more extensive validation. A small number of pet dogs (2/43, 4.7%) and one cat (1/21, 4.8%) were positive for SARS-CoV-2 RNA, and 28.6 and 37.5% of cats and dogs were positive for anti-SARS-CoV-2 IgG, respectively.


Asunto(s)
COVID-19 , Enfermedades de los Gatos , Enfermedades de los Perros , Animales , Gatos , Perros , SARS-CoV-2/genética , COVID-19/diagnóstico , Mascotas , North Carolina/epidemiología , ARN Viral/genética , Enfermedades de los Perros/diagnóstico , Inmunoglobulina G
5.
J Virol ; 97(11): e0109423, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37874153

RESUMEN

IMPORTANCE: Despite the advent of highly active anti-retroviral therapy, people are still dying from HIV-related causes, many of whom are children, and a protective vaccine or cure is needed to end the HIV pandemic. Understanding the nature and activation states of immune cell subsets during infection will provide insights into the immunologic milieu associated with viremia suppression that can be harnessed via therapeutic strategies to achieve a functional cure, but these are understudied in pediatric subjects. We evaluated humoral and adaptive host immunity associated with suppression of viremia in rhesus macaques infected soon after birth with a pathogenic SHIV. The results from our study provide insights into the immune cell subsets and functions associated with viremia control in young macaques that may translate to pediatric subjects for the design of future anti-viral strategies in HIV-1-infected infants and children and contribute to an understudied area of HIV-1 pathogenesis in pediatric subjects.


Asunto(s)
Animales Recién Nacidos , Modelos Animales de Enfermedad , Infecciones por VIH , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio , Viremia , Animales , Niño , Humanos , Animales Recién Nacidos/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Macaca mulatta/inmunología , Macaca mulatta/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Viremia/inmunología , Viremia/virología , VIH/inmunología , VIH/fisiología
6.
Science ; 382(6666): eadj0070, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37797027

RESUMEN

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.


Asunto(s)
Antígenos Virales , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de ARNm , Humanos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Vacunas de ARNm/inmunología , Vacunación , Sustitución de Aminoácidos
7.
medRxiv ; 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37577568

RESUMEN

Age is among the strongest risk factors for severe outcomes from SARS-CoV-2 infection. We sought to evaluate associations between age and both mucosal and systemic host responses to SARS-CoV-2 infection. We profiled the upper respiratory tract (URT) and peripheral blood transcriptomes of 201 participants (age range of 1 week to 83 years), including 137 non-hospitalized individuals with mild SARS-CoV-2 infection and 64 uninfected individuals. Among uninfected children and adolescents, young age was associated with upregulation of innate and adaptive immune pathways within the URT, suggesting that young children are primed to mount robust mucosal immune responses to exogeneous respiratory pathogens. SARS-CoV-2 infection was associated with broad induction of innate and adaptive immune responses within the URT of children and adolescents. Peripheral blood responses among SARS-CoV-2-infected children and adolescents were dominated by interferon pathways, while upregulation of myeloid activation, inflammatory, and coagulation pathways was observed only in adults. Systemic symptoms among SARS-CoV-2-infected subjects were associated with blunted innate and adaptive immune responses in the URT and upregulation of many of these same pathways within peripheral blood. Finally, within individuals, robust URT immune responses were correlated with decreased peripheral immune activation, suggesting that effective immune responses in the URT may promote local viral control and limit systemic immune activation and symptoms. These findings demonstrate that there are differences in immune responses to SARS-CoV-2 across the lifespan, including between young children and adolescents, and suggest that these varied host responses contribute to observed differences in the clinical presentation of SARS-CoV-2 infection by age. One Sentence Summary: Age is associated with distinct upper respiratory and peripheral blood transcriptional responses among children and adults with SARS-CoV-2 infection.

8.
J Clin Microbiol ; 61(8): e0036723, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37395655

RESUMEN

Research on the COVID-19 pandemic revealed a disproportionate burden of COVID-19 infection and death among underserved populations and exposed low rates of SARS-CoV-2 testing in these communities. A landmark National Institutes of Health (NIH) funding initiative, the Rapid Acceleration of Diagnostics-Underserved Populations (RADx-UP) program, was developed to address the research gap in understanding the adoption of COVID-19 testing in underserved populations. This program is the single largest investment in health disparities and community-engaged research in the history of the NIH. The RADx-UP Testing Core (TC) provides community-based investigators with essential scientific expertise and guidance on COVID-19 diagnostics. This commentary describes the first 2 years of the TC's experience, highlighting the challenges faced and insights gained to safely and effectively deploy large-scale diagnostics for community-initiated research in underserved populations during a pandemic. The success of RADx-UP shows that community-based research to increase access and uptake of testing among underserved populations can be accomplished during a pandemic with tools, resources, and multidisciplinary expertise provided by a centralized testing-specific coordinating center. We developed adaptive tools to support individual testing strategies and frameworks for these diverse studies and ensured continuous monitoring of testing strategies and use of study data. In a rapidly evolving setting of tremendous uncertainty, the TC provided essential and real-time technical expertise to support safe, effective, and adaptive testing. The lessons learned go beyond this pandemic and can serve as a framework for rapid deployment of testing in response to future crises, especially when populations are affected inequitably.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Prueba de COVID-19 , SARS-CoV-2 , Poblaciones Vulnerables , Pandemias
10.
J Immunol Methods ; 515: 113452, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36858170

RESUMEN

The use of conventional serum for supplementation of media in cell-based and single-cell functional assays has been a major challenge for assay performance, standardization, optimization, and reproducibility. It has been identified as the leading cause of variability and suboptimal performance in large, international Elispot proficiency panels (Janetzki et al., 2008; Rountree et al., 2016). Extensive pretesting and optimization activities are one approach to overcome these challenges, but they are time-consuming and resource-intensive because suitable lots of serum are difficult to identify and secure in sufficient quantities to provide stability in long-term studies. Advancements in manufacturing methods have resulted in a new class of serum with the potential to solve these challenges. An IFNÉ£ Elispot study was designed by the External Quality Assurance Program Oversight Laboratory (EQAPOL) at Duke Human Vaccine Institute's (DHVI) Immunology and Virology Quality Assessment Center (IVQAC) to test this new class of serum against their in-house, validated control serum, which is regarded as a global standard in performance for high functionality, recovery, and viability. Commonly used serum-free media were also included in the study. The results of this study compellingly demonstrate that this new class of serum produces high responses and low background reactivity comparable to the included serum standard, with excellent recovery and viability of cells. A protocol for ongoing testing has been developed to continuously validate new batches of this serum with the goal to make available to the field a pretested and validated serum that can be used with confidence in functional cell-based assays.


Asunto(s)
Laboratorios , Humanos , Reproducibilidad de los Resultados , Ensayo de Immunospot Ligado a Enzimas , Estándares de Referencia
11.
Anal Chem ; 95(13): 5610-5617, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36961989

RESUMEN

Antigen tests to detect SARS-CoV-2 have emerged as a promising rapid diagnostic method for COVID-19, but they are unable to differentiate between variants of concern (VOCs). Here, we report a rapid point-of-care test (POC-T), termed CoVariant-SPOT, that uses a set of antibodies that are either tolerant or intolerant to spike protein mutations to identify the likely SARS-CoV-2 strain concurrent with COVID-19 diagnosis using antibodies targeting the nucleocapsid protein. All reagents are incorporated into a portable, multiplexed, and sensitive diagnostic platform built upon a nonfouling polymer brush. To validate CoVariant-SPOT, we tested recombinant SARS-CoV-2 proteins, inactivated viruses, and nasopharyngeal swab samples from COVID-19 positive and negative individuals and showed that CoVariant-SPOT can readily distinguish between two VOCs: Delta and Omicron. We believe that CoVariant-SPOT can serve as a valuable adjunct to next-generation sequencing to rapidly identify variants using a scalable and deployable POC-T, thereby enhancing community surveillance efforts worldwide and informing treatment selection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sistemas de Atención de Punto , Prueba de COVID-19 , Anticuerpos
12.
Cell Rep ; 42(3): 112255, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36924501

RESUMEN

Infants and children infected with human immunodeficiency virus (HIV)-1 have been shown to develop neutralizing antibodies (nAbs) against heterologous HIV-1 strains, characteristic of broadly nAbs (bnAbs). Thus, having a neonatal model for the induction of heterologous HIV-1 nAbs may provide insights into the mechanisms of neonatal bnAb development. Here, we describe a neonatal model for heterologous HIV-1 nAb induction in pathogenic simian-HIV (SHIV)-infected rhesus macaques (RMs). Viral envelope (env) evolution showed mutations at multiple sites, including nAb epitopes. All 13 RMs generated plasma autologous HIV-1 nAbs. However, 8/13 (62%) RMs generated heterologous HIV-1 nAbs with increasing potency over time, albeit with limited breadth, and mapped to multiple nAb epitopes, suggestive of a polyclonal response. Moreover, plasma heterologous HIV-1 nAb development was associated with antigen-specific, lymph-node-derived germinal center activity. We define a neonatal model for heterologous HIV-1 nAb induction that may inform future pediatric HIV-1 vaccines for bnAb induction in infants and children.


Asunto(s)
Enfermedades Transmisibles , Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Lactante , Recién Nacido , Humanos , Niño , Macaca mulatta , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes , Epítopos
13.
bioRxiv ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35860221

RESUMEN

During the SARS-CoV-2 pandemic, multiple variants escaping pre-existing immunity emerged, causing concerns about continued protection. Here, we use antigenic cartography to analyze patterns of cross-reactivity among a panel of 21 variants and 15 groups of human sera obtained following primary infection with 10 different variants or after mRNA-1273 or mRNA-1273.351 vaccination. We find antigenic differences among pre-Omicron variants caused by substitutions at spike protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months post-2nd dose. We find changes in immunodominance of different spike regions depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine strain selection.

14.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187726

RESUMEN

Immunization with mRNA or viral vectors encoding spike with diproline substitutions (S-2P) has provided protective immunity against severe COVID-19 disease. How immunization with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike elicits neutralizing antibodies (nAbs) against difficult-to-neutralize variants of concern (VOCs) remains an area of great interest. Here, we compare immunization of macaques with mRNA vaccines expressing ancestral spike either including or lacking diproline substitutions, and show the diproline substitutions were not required for protection against SARS-CoV-2 challenge or induction of broadly neutralizing B cell lineages. One group of nAbs elicited by the ancestral spike lacking diproline substitutions targeted the outer face of the receptor binding domain (RBD), neutralized all tested SARS-CoV-2 VOCs including Omicron XBB.1.5, but lacked cross-Sarbecovirus neutralization. Structural analysis showed that the macaque broad SARS-CoV-2 VOC nAbs bound to the same epitope as a human broad SARS-CoV-2 VOC nAb, DH1193. Vaccine-induced antibodies that targeted the RBD inner face neutralized multiple Sarbecoviruses, protected mice from bat CoV RsSHC014 challenge, but lacked Omicron variant neutralization. Thus, ancestral SARS-CoV-2 spike lacking proline substitutions encoded by nucleoside-modified mRNA can induce B cell lineages binding to distinct RBD sites that either broadly neutralize animal and human Sarbecoviruses or recent Omicron VOCs.

15.
Nat Commun ; 13(1): 6309, 2022 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-36274085

RESUMEN

Coronavirus vaccines that are highly effective against current and anticipated SARS-CoV-2 variants are needed to control COVID-19. We previously reported a receptor-binding domain (RBD)-sortase A-conjugated ferritin nanoparticle (scNP) vaccine that induced neutralizing antibodies against SARS-CoV-2 and pre-emergent sarbecoviruses and protected non-human primates (NHPs) from SARS-CoV-2 WA-1 infection. Here, we find the RBD-scNP induced neutralizing antibodies in NHPs against pseudoviruses of SARS-CoV and SARS-CoV-2 variants including 614G, Beta, Delta, Omicron BA.1, BA.2, BA.2.12.1, and BA.4/BA.5, and a designed variant with escape mutations, PMS20. Adjuvant studies demonstrate variant neutralization titers are highest with 3M-052-aqueous formulation (AF). Immunization twice with RBD-scNPs protect NHPs from SARS-CoV-2 WA-1, Beta, and Delta variant challenge, and protect mice from challenges of SARS-CoV-2 Beta variant and two other heterologous sarbecoviruses. These results demonstrate the ability of RBD-scNPs to induce broad neutralization of SARS-CoV-2 variants and to protect animals from multiple different SARS-related viruses. Such a vaccine could provide broad immunity to SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Nanopartículas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Vacunas Virales , Ratones , Animales , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , Ratones Endogámicos BALB C , COVID-19/prevención & control , Anticuerpos Neutralizantes/química , Ferritinas
16.
Sci Transl Med ; 14(661): eabo5598, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36070369

RESUMEN

A successful HIV-1 vaccine will require induction of a polyclonal neutralizing antibody (nAb) response, yet vaccine-mediated induction of such a response in primates remains a challenge. We found that a stabilized HIV-1 CH505 envelope (Env) trimer formulated with a Toll-like receptor 7/8 agonist induced potent HIV-1 polyclonal nAbs that correlated with protection from homologous simian-human immunodeficiency virus (SHIV) infection. The serum dilution that neutralized 50% of virus replication (ID50 titer) required to protect 90% of macaques was 1:364 against the challenge virus grown in primary rhesus CD4+ T cells. Structural analyses of vaccine-induced nAbs demonstrated targeting of the Env CD4 binding site or the N156 glycan and the third variable loop base. Autologous nAb specificities similar to those elicited in macaques by vaccination were isolated from the human living with HIV from which the CH505 Env immunogen was derived. CH505 viral isolates were isolated that mutated the V1 to escape both the infection-induced and vaccine-induced antibodies. These results define the specificities of a vaccine-induced nAb response and the protective titers of HIV-1 vaccine-induced nAbs required to protect nonhuman primates from low-dose mucosal challenge by SHIVs bearing a primary transmitted/founder Env.


Asunto(s)
Vacunas contra el SIDA , Enfermedades Transmisibles , VIH-1 , Virus de la Inmunodeficiencia de los Simios , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Inmunización , Macaca mulatta , Vacunación
17.
Am J Transl Res ; 14(8): 5693-5711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105067

RESUMEN

OBJECTIVES: Coronavirus Disease 2019 (COVID-19) is a viral illness with public health importance. The Cabarrus County COVID-19 Prevalence and Immunity (C3PI) Study is a prospective, longitudinal cohort study designed to contribute valuable information on community prevalence of active COVID-19 infection and SARS-CoV-2 antibodies as the pandemic and responses to it have and continue to evolve. We present the rationale, study design, and baseline characteristics of the C3PI Study. METHODS: We recruited 1,426 participants between June 2020 and August 2020 from the Measurement to Understand the Reclassification of Disease of Cabarrus/Kannapolis (MURDOCK) Study Community Registry and Biorepository, a previously established, community-based, longitudinal cohort. Participants completed a baseline survey and follow-up surveys every two weeks. A nested weighted, random sub-cohort (n=300) was recruited to measure the incidence and prevalence of active COVID-19 infection and SARS-CoV-2 IgG antibodies. RESULTS: The sub-cohort was younger (56 vs 61 years), had more men (39.0% vs 30.9%), and a higher proportion of Hispanic (11.0% vs 5.1%) and Black participants (17.0% vs 8.2%) compared with the overall cohort. They had similar anthropometrics and medical histories, but a greater proportion of the sub-cohort had a higher educational degree (36.1% vs 31.3%) and reported a pre-pandemic annual household income of >$90,000 (57.1% vs 47.9%). CONCLUSION: This study is part of a multisite consortium that will provide critical data on the epidemiology of COVID-19 and community perspectives about the pandemic, behaviors and mitigation strategies, and individual and community burden in North Carolina.

18.
Nat Biomed Eng ; 6(7): 791-805, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35788687

RESUMEN

The first two mRNA vaccines against infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that were approved by regulators require a cold chain and were designed to elicit systemic immunity via intramuscular injection. Here we report the design and preclinical testing of an inhalable virus-like-particle as a COVID-19 vaccine that, after lyophilisation, is stable at room temperature for over three months. The vaccine consists of a recombinant SARS-CoV-2 receptor-binding domain (RBD) conjugated to lung-derived exosomes which, with respect to liposomes, enhance the retention of the RBD in both the mucus-lined respiratory airway and in lung parenchyma. In mice, the vaccine elicited RBD-specific IgG antibodies, mucosal IgA responses and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile in the animals' lungs, and cleared them of SARS-CoV-2 pseudovirus after a challenge. In hamsters, two doses of the vaccine attenuated severe pneumonia and reduced inflammatory infiltrates after a challenge with live SARS-CoV-2. Inhalable and room-temperature-stable virus-like particles may become promising vaccine candidates.


Asunto(s)
COVID-19 , Exosomas , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Linfocitos T CD8-positivos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2
19.
Sci Rep ; 12(1): 11714, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810186

RESUMEN

SARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associated with mild or moderate symptoms were already robust and included severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity was marked by upregulation of classical antiviral pathways, including those regulating IRF1 and IRF7, whereas in moderate disease, these classical antiviral signals diminished, suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.


Asunto(s)
COVID-19 , Cromatina , Antivirales , COVID-19/genética , Cromatina/genética , Humanos , Inmunoglobulina G/genética , Leucocitos Mononucleares , SARS-CoV-2 , Seroconversión , Índice de Severidad de la Enfermedad
20.
Health Sci Rep ; 5(4): e554, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35899182

RESUMEN

Purpose: Several cases of symptomatic reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after full recovery from a prior episode have been reported. As reinfection has become an increasingly common phenomenon, an improved understanding of the risk factors for reinfection and the character and duration of the serological responses to infection and vaccination is critical for managing the coronavirus disease 2019 (COVID-19) pandemic. Methods: We described four cases of SARS-CoV-2 reinfection in individuals representing a spectrum of healthy and immunocompromised states, including (1) a healthy 41-year-old pediatrician, (2) an immunocompromised 31-year-old with granulomatosis with polyangiitis, (3) a healthy 26-year-old pregnant woman, and (4) a 50-year-old with hypertension and hyperlipidemia. We performed confirmatory quantitative reverse transcription-polymerase chain reaction and qualitative immunoglobulin M and quantitative IgG testing on all available patient samples to confirm the presence of infection and serological response to infection. Results: Our analysis showed that patients 1 and 2, a healthy and an immunocompromised patient, both failed to mount a robust serologic response to the initial infection. In contrast, patients 3 and 4, with minimal comorbid disease, both mounted a strong serological response to their initial infection, but were still susceptible to reinfection. Conclusion: Repeat episodes of COVID-19 are capable of occurring in patients regardless of the presence of known risk factors for infection or level of serological response to infection, although this did not trigger critical illness in any instance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...